organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xingguo Zhang,* Ping Zhong, Mao-lin Hu, Deqing Lin and Jing Lin

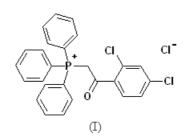
School of Chemistry and Materials Science, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Correspondence e-mail: zxg7599@sohu.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.097 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


(2,4-Dichlorobenzoylmethyl)triphenylphosphonium chloride

In the crystal structure of the title compound, $C_{26}H_{20}Cl_2OP^+ \cdot Cl^-$, there are intermolecular $C-H \cdot \cdot \cdot O$ hydrogen bonds, and both intramolecular and intermolecular $C-H \cdot \cdot \cdot Cl$ hydrogen bonds.

Received 27 May 2004 Accepted 9 June 2004 Online 19 June 2004

Comment

Triphenylphosphonium salts are often intermediates in the preparation of triphenylphosphonium ylides, which are important materials in Wittig reactions (Maryanoff & Reitz, 1989). Triphenylphosphonium salts can also react with aldehydes in the absence of base to form a C=C double bond (Zhang *et al.*, 2004). Some crystal structures of these salts have been reported (Antipin & Struchkov, 1984). The title compound, (I), is an intermediate in the preparation of 1-phenylpropenones.

In the molecule of (I) (Fig. 1), the planarity of the substituted phenyl ring C21–C26 (r.m.s. deviation = 0.007 Å) is unaffected by the chloro substituents. There are standard electrostatic interactions between the (2,4-dichlorobenzoyl-methyl)triphenylphosphonium cations and the chloride anions.

As in other triphenylphosphonium salts (Mariyatra *et al.*, 2003), there are some intermolecular and intramolecular C– $H \cdots O$ and C– $H \cdots Cl$ hydrogen bonds (Table 2). The packing is shown in Fig. 2.

Experimental

The title compound was synthesized from triphenylphosphine (2.62 g, 10 mmol) and 2,2',4'-trichloroacetophenone (2.23 g, 10 mmol), refluxed for 2 h in toluene (50 ml). The product was separated by filtration. Single crystals suitable for X-ray diffraction (m.p. 423–425 K) were obtained by slow evaporation of a benzene/toluene (1:2) solution. Spectroscopic analysis: IR (KBr, ν cm⁻¹): 2997, 2782, 1659, 1107; ¹H NMR (CDCl₃, δ): 7.42–7.95 (*m*, 18H), 6.62 (*s*, 2H).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $C_{26}H_{20}Cl_2OP^+ \cdot Cl^ M_r = 485.74$ Monoclinic, $P2_1/c$ a = 12.5615 (4) Å b = 10.9659 (4) Å c = 17.2638 (5) Å $\beta = 104.805$ (1)° V = 2299.11 (13) Å³ Z = 4

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.884, T_{max} = 0.914$ 11818 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.8375P]
$wR(F^2) = 0.097$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
4131 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
280 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cl1-C22	1.737 (2)	P1-C19	1.8044 (19)
Cl2-C24	1.733 (2)	O1-C20	1.218 (2)
P1-C6	1.7984 (19)	C19-C20	1.526 (3)
P1-C18	1.8000 (19)	C20-C21	1.479 (3)
P1-C12	1.8006 (18)		
C6-P1-C18	103.99 (9)	O1-C20-C21	123.30 (17)
C6-P1-C12	107.65 (9)	O1-C20-C19	117.84 (17)
C18-P1-C12	113.76 (9)	C23-C22-Cl1	115.44 (15)
C6-P1-C19	111.49 (9)	C21-C22-Cl1	122.91 (16)
C18-P1-C19	111.28 (9)	C25-C24-Cl2	119.12 (17)
C12-P1-C19	108.59 (9)	C23-C24-Cl2	118.55 (16)

 $D_x = 1.403 \text{ Mg m}^{-3}$

Cell parameters from 4946

Mo $K\alpha$ radiation

reflections

 $\mu = 0.49 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 25.2^\circ$

 $h = -15 \rightarrow 13$

 $k=-13\rightarrow13$

 $l = -20 \rightarrow 19$

Block, colorless

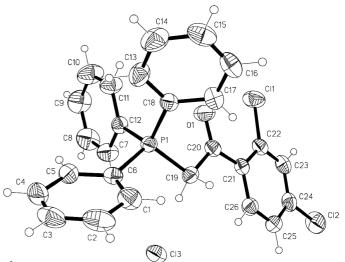
 $0.26 \times 0.21 \times 0.19 \text{ mm}$

4131 independent reflections

3694 reflections with $I > 2\sigma(I)$

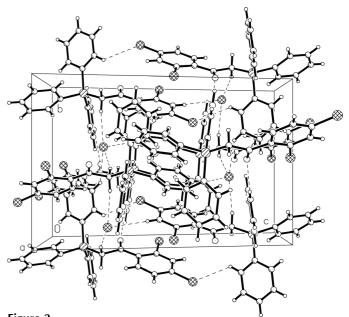
 $\theta = 2.5 - 25.2^{\circ}$

Table 2


Hydrogen-	bonding g	eometry (A	∖ , °).
-----------	-----------	------------	----------------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···Cl3 ⁱ	0.93	2.82	3.640 (2)	148
C9−H9···O1 ⁱⁱ	0.93	2.51	3.386 (3)	157
C17-H17···Cl2 ⁱⁱⁱ	0.93	2.79	3.396 (2)	123
C19−H19A···Cl3 ^{iv}	0.97	2.59	3.534 (2)	165
C19−H19B···Cl3	0.97	2.59	3.555 (2)	173
$C23-H23\cdots Cl3^{v}$	0.93	2.80	3.715 (2)	166

Symmetry codes: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) 1 - x, -y, 1 - z; (iv) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (v) $x, \frac{1}{2} - y, \frac{1}{2} + z$.


All H atoms were initially located in a difference Fourier map and were then positioned geometrically and constrained to ride on their parent atoms, with C–H distances in the range 0.95–1.0 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL*.

Figure 1

The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Packing diagram, viewed down the a axis. Dashed lines represent hydrogen bonds.

This work was supported by the National Natural Science Foundation of China (No. 20272075) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Antipin, M. Y. & Struchkov, Y. T. (1984). J. Struct. Chem. 25, 122-122.

- Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mariyatra, M. B., Kalyanasundari, B., Panchanatheswaran, K. & Goeta, A. E. (2003). Acta Cryst. E**59**, 0255–0257.
- Maryanoff, B. E. & Reitz, A. B. (1989). Chem. Rev. 89, 863-927.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhang, X., Zhong, P.& Chen, F. (2004). Synth. Commun. 34, 1729-1736.